

Séance Technique CFGI 06/02/2020

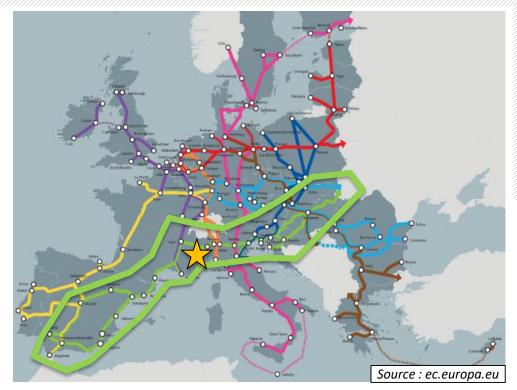


Exemple de valorisation des déblais de tunnel : Tunnel transfrontalier Lyon-Turin

Isabelle MOULIN – Antoine FAURE setec lerm

# Descriptif projet tunnel transfrontalier

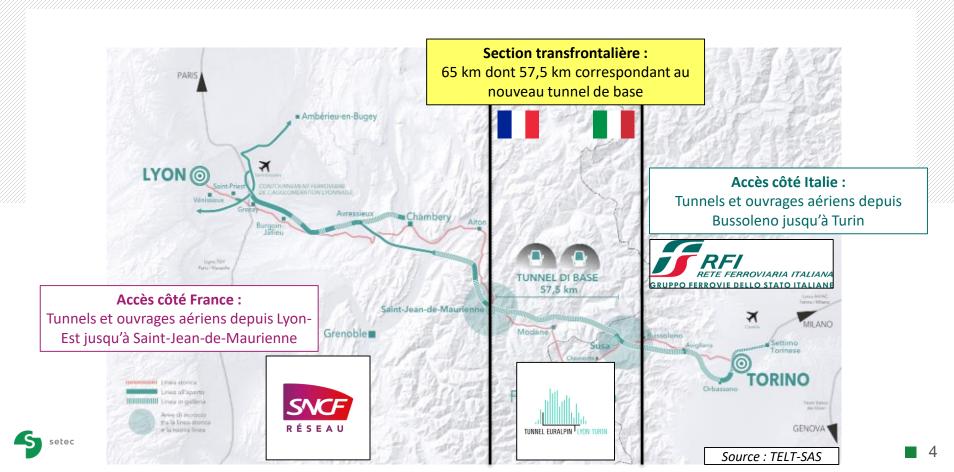
01.




#### Trans-European Transport Network (TEN-T)

#### TEN-T

Projet à l'échelle Européenne de création d'un vaste réseau de lignes ferroviaires (majoritairement à grandes vitesses)

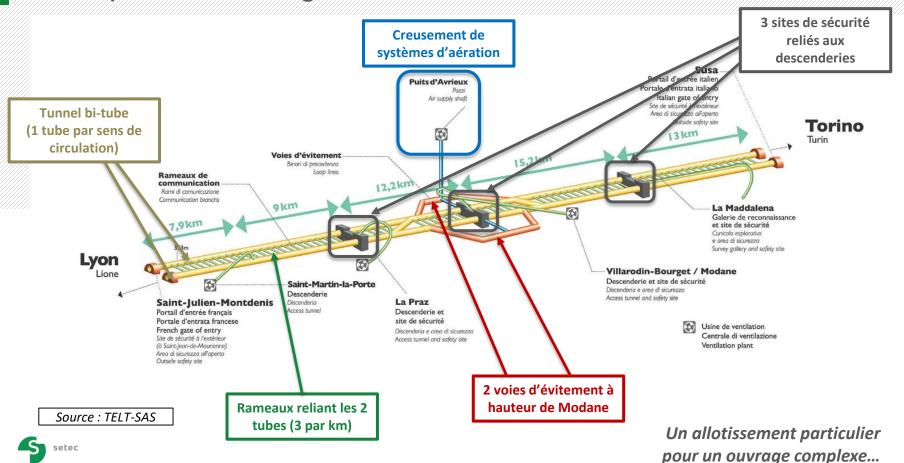

« Métro » à l'échelle européenne



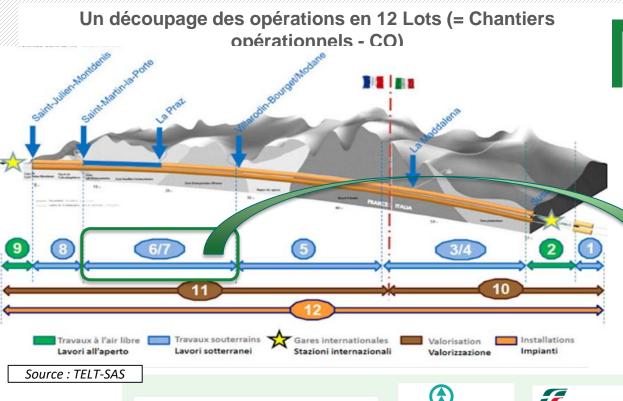
Corridor **vert** = corridor Méditerranéen
Maillon important du corridor : traversée des Alpes
(frontière franco-italienne) → Nouveau tunnel de base



#### Nouvelle liaison entre Lyon (FR) et Turin (IT)




#### Tunnel de base transfrontalier


Maîtrise d'ouvrage : TELT-SAS (Tunnel Euralpin Lyon Turin, ex-LTF et ex-Alpetunnel) Portail ouest: Portail est: **TUNNEL DE BASE St-Jean-de-Maurienne** Val de Suse 57,5 km (Environ ¾ du tracé côté France) **Tunnel du Mont-Cenis historique:** Ouvrage du XIXème siècle marqué par de fortes déclivités → Contraintes de circulation ferroviaire → Possibilités d'accroissement du trafic très limitées Principe du tunnel de base : 1200 Tunnel de faible altitude 30 800 → Pentes moins fortes Pente maxi → Circulation des trains à vitesse plus élevée Pente maxi 6.5 % 8,4 % Pente maxi 12.5 % Contraintes de creusement : 11,3 % 200 → Longueurs à excaver accrues : utilisation de tunneliers Source: TELT-SAS requise Ligne historique: Ligne nouvelle : Tunnel historique (14 km) → Couverture rocheuse > 2000 m en certains secteurs Profil de montagne Profil de plaine Tunnel de base (57 km) (conséquences d'un point de vue géomécanique et des Pente maximale: 33 % Pente maximale: 12.5 %

températures rencontrées)

#### Descriptif de l'ouvrage tunnel de base



#### Allotissement



- 9 chantiers de génie civil géographiques d'Est en Ouest
- 2 chantiers relatifs à la gestion des matériaux d'excavation (CO10 côté Italie / CO11 côté France)
- 1 chantier intégratif CO 12 relatif aux équipements du tunnel

#### Focus chantiers opérationnels CO6/7

→ Creusements réalisés à partir des descenderies de Saint-Martinla-Porte et La Praz

MAÎTRISE D'ŒUVRE CO6/7:





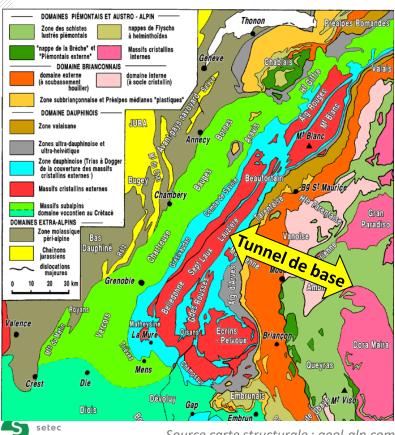
SYSTIA





**Valorisation** matériaux

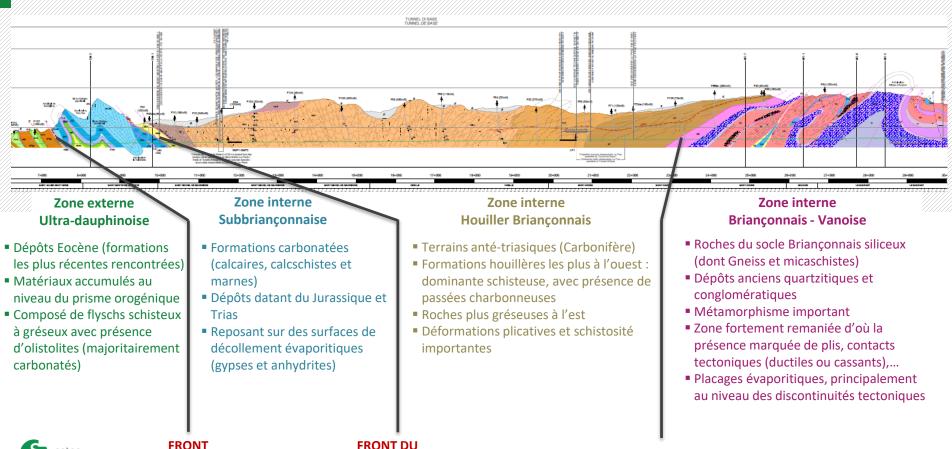





Formations géologiques rencontrées sur chantiers opérationnels 6 et 7

02.




#### Le tunnel de base, témoin de la diversité géologique des Alpes



- Disposition des formations géologiques alpines en zones globalement parallèles orientées NNW-SSE
- Or, le tunnel de base s'étend sur un axe Est-**Ouest**
- → Le tracé recoupe donc perpendiculairement la succession des structures géologiques alpines
- → Traversée de discontinuités majeures de la géologie alpine, pour CO6/7 : chevauchement pennique, Front Houiller, accident de Modane-Chavière

#### Formations rencontrées sur les CO 6 et 7

**PENNIQUE** 



**HOUILLER** 

#### Des certitudes, des incertitudes

#### Modèle géologique qui s'appuie sur :

- Des reconnaissances de terrain amont (sondages)
- Le creusement des différentes descenderies
- Le creusement des galeries de reconnaissance, notamment le tube sud entre Saint-Martin-la-Porte et La Praz (chantier SMP4 – 8,7 km)

#### ... des incertitudes à prendre en compte :

- La présence / absence de certaines formations dont le positionnement reste encore mal connu
- L'extension de certaines lithologies
- La localisation exacte de contacts tectoniques ou stratigraphiques et leurs caractéristiques (pendage / direction)
- Les caractéristiques physico-chimiques et minéralogiques de certaines lithologies (ex. teneurs en SO<sub>3</sub> de formations siliceuses de la Vanoise)



## Objectifs et stratégies de valorisation

03.



### Contexte de la valorisation des déblais d'excavation

#### Tonnages de matériaux en jeu

#### **MATEX**

- 23,5 Mt sur 6 ans pour les chantiers de génie civil côté France
- 10,3 Mt pour les chantiers opérationnels 6 et 7

#### **BESOINS EN GRANULATS BETON**

- 6,4 Mt sur 5 ans pour les chantiers côté France
- 2,7 Mt pour les chantiers opérationnels 6 et 7

Sachant que la consommation en granulats du département de la Savoie (hors projet TELT) est d'environ 3,5 Mt/an, dont 1,2 Mt pour la confection de bétons...

- Limiter les transports de matériaux entrants (granulats béton et remblais) et sortants (matériaux d'excavation)
- Limiter les volumes de matériaux d'excavation à stocker



### **Optimisation de l'utilisation des matériaux d'excavation (MATEX) :**

- Granulats béton (confection des bétons de génie civil TELT)
- Remblais techniques
- Remblais courants
  - Mise en dépôt

Gare St-Jeande-Maurienne principalement



## Une sélection des faciès lithologiques aptes à la valorisation matière

Pré-classification des

faciès rencontrés sur le tracé

Recommandations
AFTES GT35

Classe Cl1

Lithologies a priori adaptées pour la fabrication de granulats béton

- Calcaires massifs du Subbriançonnais
- Grès houiller de La Praz
- Micaschistes du socle cristallin de la Vanoise
- Orthogneiss du Sapey

Conformité des granulats produits à partir de MATEX aux normes :

NF EN 12620 et NF P 18-545

Exigences portant en particulier sur :

- Résistance mécanique (Los Angeles)
- Caractéristiques de forme (aplatissement)
- Granularité et teneur en fines
- Teneur en matière organique
- Réactivité vis-à-vis des alcalins
- Soufre total
- Sulfates



- Nécessité d'un tri et de caractérisations physicochimiques
- Elimination de la fraction non valorisable
- → Notamment les lithologies de la Vanoise cristalline dont les teneurs en SO<sub>3</sub> sont variables

#### Lithologies non adaptées à la fabrication de granulats béton

- Faciès évaporitiques
- Cargneules
- Flyschs de l'Ultradauphinois présentant des performances mécaniques insuffisantes
- Houiller productif

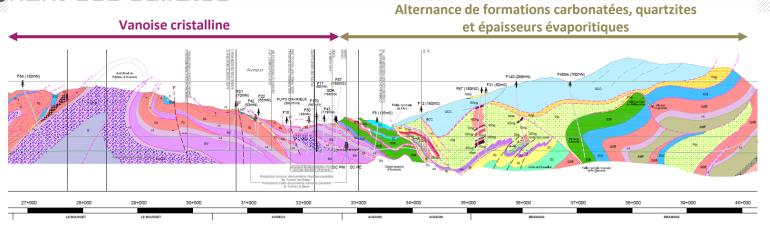
Classe Cl3a

Classe Cl2

Si aptitude à la

production de

remblai


Si mise en dépôt

#### Classe Cl3b

Si mise en dépôt dans des conditions particulières (caractère évolutif)

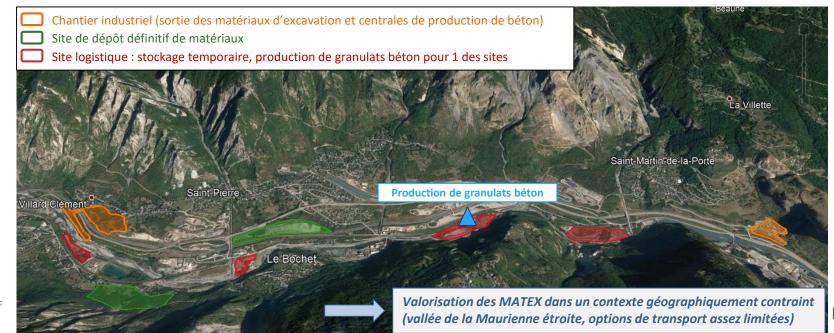


## Problématique des faciès lithologiques contenant des sulfates



#### Caractéristiques des formations géologiques rencontrées dans ces secteurs :

- Plusieurs d'entre elles présentent des performances géomécaniques suffisantes pour la fabrication de granulats béton
- Leurs teneurs en SO<sub>3</sub> sont susceptibles de se situer au-delà du seuil normatif de 0,2 % massique (visant à se prémunir de réactions sulfatiques au sein des bétons engendrant des désordres dans les ouvrages)


- Etudes et expérimentations menées par TELT (et précédemment LTF) pour rechercher des formulations béton (adaptation des liants) permettant d'utiliser des granulats sulfatés
- Essais à l'échelle pilote industriel
- → Normalisation en cours d'essais de performance adaptés à l'utilisation de granulats sulfatiques



#### Traitement des MATEX

#### La fabrication de granulats pour béton à partir de MATEX requiert notamment :

- Mise en place d'une logistique adaptée : transport des matériaux sur bandes transporteuses, stocks tampons,...
- Tri et contrôle des MATEX permettant de valider leur aptitude à la fabrication de granulats pour béton
- Installation de traitement des matériaux adaptée (concassage, broyage, criblage)
- Contrôle renforcé des granulats pour béton produits





#### En résumé...

- Premier projet de valorisation de déblais d'excavation pour la fabrication de granulats béton de cette ampleur en France
- Ambition de réduire au maximum les flux de matériaux importés et exportés
- Mise en place de station de traitement des matériaux adaptés à la production de granulats pour béton et d'un contrôle renforcé permettant une maitrise de la qualité des granulats produits
- Fonctionnement « en flux tendu » du système de traitement des matériaux → Enjeu de ne pas ralentir ou arrêter la progression des tunneliers
- Complexité liée au nombre de fronts d'excavation (jusqu'à 7 tubes pouvant être réalisés simultanément sur les chantiers opérationnels 6 et 7)





## THANK YOU FOR YOUR ATTENTION

#### Coordonnées:

isabelle.moulin@setec.com antoine.faure@setec.com

setec lerm – Agence Paris IIe-de-France Immeuble Central Seine 42-52, quai de la Rapée 75583 Paris Cedex 12 France

